Total Pages-10 B.Sc.-CBCS/IS/MATH/H/C2T/17

2017

MATHEMATICS

[Honours]

(CBCS)

[First Semester]

PAPER-C2T

Full Marks: 60

Time: 3 hours

The figures in the right hand margin indicate marks

UNIT-I

(Classical Algebra)

1. Answer any one question:

 2×1

- (a) If x + iy moves on the straight line 3x + 4y + 5 = 0, then find the minimum value of |x + iy|.
- (b) Solve the equation $x^5 + x^4 + x^3 + x^2 + x + 1 = 0$. 2

2. Answer any two questions:

5 x 2

(a) If $(1 + i \tan \alpha)^{1 + i \tan \beta}$ can have real values, then show that one of them is $(\sec \alpha)^{\sec^2 \beta}$.

(b) Show that the condition that the sum of two roots of the equation $x^4 + mx^2 + nx + p = 0$ be equal to the product of the other two roots is $(2p-n)^2 = (p-n)(p+m-n)^2$.

(c) If $a_1, a_2, ..., a_n$ be n real positive quantities then prove that

$$A.M. \ge G.M. \ge H.M.$$

5

3. Answer any one question:

 10×1

(a) (i) If
$$x + \frac{1}{x} = 2\cos\alpha$$
, $y + \frac{1}{y} = 2\cos\beta$, $z + \frac{1}{z} = 2\cos\gamma$, and $x + y + z = 0$ then prove that

$$\sum \sin 4\alpha = 2 \sum \sin(\beta + \gamma)$$
and
$$\sum \cos 4\alpha = 2 \sum \cos(\beta + \gamma)$$

- (ii) If the equation whose roots are squares of the roots of the cubic $x^3 ax^2 + bx 1 = 0$ is identical with this cubic, prove that either a = b = 0 or a = b = 3 or a_1b are the roots of the equation $t^2 + t + 2 = 0$.
- (b) (i) If a, b, c, x, y, z be all real numbers and $a^2 + b^2 + c^2 = 1$, $x^2 + y^2 + z^2 = 1$ then prove that $-1 \le ax + by + cz \le 1$. If $a_1, a_2, \dots a_n$ be n positive rational

If $a_1, a_2, \dots a_n$ be *n* positive rational numbers and $s = a_1 + a_2 + \dots + a_n$, prove that

$$\left(\frac{s}{a_1}-1\right)^{a_1}\left(\frac{s}{a_2}-1\right)^{a_2}\cdots\left(\frac{s}{a_n}-1\right)^{a_n}\leq (n-1)^s.$$
 $2+3$

(ii) If the equation $x^3 + px^2 + qx + r = 0$ has a root $\alpha + i\alpha$ where p, q, r and α are real, prove that $(p^2 - 2q)(q^2 - 2pr) = r^2$.

Hence solve the equation

$$x^3 - x^2 - 4x + 24 = 0$$
. $3 + 2$

UNIT - II

(Sets and Integers)

4.	Answer any five questions: 2	×
1000	(a) Prove that intersection of two equivalence relations is also an equivalence relation.	;
	(b) Prove that square of any integer is of the form $3k$ or $3k + 1$.	
	(c) Examine if the relation ρ on the set \mathbb{Z} is an equivalence relation or not	
5	$\rho = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : a-b \leq 3\}.$	2
	(d) Prove that, there exists no integer in between 0 and 1.	2
	(e) Let $P = \{n \in \mathbb{Z} : 0 \le n \le 5\}, Q = \{n \in \mathbb{Z} : -5 \le n \le 0\}$ be two sets. Prove that cardinality of two sets	
	are equal.	2

(f) If
$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 then prove that
$$s_n > \frac{2n}{n+1}$$
if $n > 1$.

(g) If X and Y are two non-empty sets and $f: X \rightarrow Y$ be an onto mapping, then for any subsets A and B of Y, prove that

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$$
 2

- (h) (i) State the Fundamental theorem of Arithmetic.
 - (ii) If a divides b, then prove that every divisor of a divides b.
- 5. Answer any *one* question: 5×1
 - (a) (i) Prove that $1^n 3^n 6^n + 8^n$ is divisible by $10 \forall n \in \mathbb{N}$.
 - (ii) Find integers u and v satisfying 20u + 63v = 1.

2

(b) (i)	State the division algorithm on the set	
	of integers.	

(ii) Find integers s and t such that

$$gcd(341, 1643) = 341s + 1643t.$$

(iii) Using the theory of congruence for finding the remainder when the sum $1^5 + 2^5 + 3^5 + \dots + 100^5$ is divided by 5.

UNIT - III

(System of Linear Equations)

6. Answer any two questions:

 2×2

(a) Solve the system of equations:

$$x + 2y - z - 3w = 1$$

$$2x + 4y + 3z + w = 3$$

$$3x + 6y + 4z - 2w = 5$$

if possible.

2

(b) For what values of k the system of equations

$$x + 2y + 3z = kx$$
$$2x + y + 3z = ky$$
$$2x + 3y + z = kz$$

has a non-trivial solution.

2

- (c) Determine k so that the set $\{(1, 2, 1), (k, 3, 1), (2, k, 0)\}$ is linearly dependent.
- 7. Answer any one question:

 5×1

(a) Determine the conditions for which the system

$$x + y + z = 1$$

$$x + 2y - z = b$$

$$5x + 7y + az = b^{2}$$

admits of (i) only one solution.

- (ii) no solution.
- (iii) many solutions.

5

(b) (i) Obtain the fully row reduced normal form of the matrix:

2

$$\begin{pmatrix}
0 & 0 & 1 & 2 & 1 \\
1 & 3 & 1 & 0 & 3 \\
2 & 6 & 4 & 2 & 8 \\
3 & 9 & 4 & 2 & 10
\end{pmatrix}$$

(ii) For what values of k, the planes x - 4y + 5z = k, x - y + 2z = 3, 2x + y + z = 0 intersect in a line.

UNIT-IV

(Linear Transformation and Eigenvalues)

8. Answer any two questions:

 2×2

(a) Find the rank of the matrix:

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$

if two straight lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are coincident.

- (b) Show that the rank of a skew symmetric matrix cannot be 1.
- (c) State Cayley-Hamilton theorem and using theorem find A^{-1} , where

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \text{ non-remainded}$$
and to show that A for which the rank of the

9. Answer any one question:

 10×1

(a) (i) If
$$A = \begin{pmatrix} \frac{1}{v_2} - \frac{1}{v_2} \\ \frac{1}{v_2} & \frac{1}{v_2} \end{pmatrix}$$
,

 $X = (x_1, x_2)^T$ and $Y = (y_1, y_2)^T$. Verify by means of the transformation X = AY that $x_1^2 + x_2^2$ is transformed to $y_1^2 + y_2^2$. Find the dimension of the subspace \mathbb{R}^3 defined by

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = z, 2x + 3z = y\}.$$

$$3 + 2$$

(ii) Verify Caley-Hamilton's theorem for the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}.$$

Hence compute A-1.

3 + 2

5

(b) (i) Find all real λ for which the rank of the matrix A in 2, where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & \lambda \\ 5 & 7 & 1 & \lambda^2 \end{pmatrix}.$$
 3

- (ii) If $X_1, X_2, ..., X_r$ be r eigen vectors of an $n \times n$ matrix A corresponding to r distinct eigen values $\lambda_1, \lambda_2, ..., \lambda_r$ respectively, then prove that $X_1, X_2, ..., X_r$ are linearly independent.
- (iii) λ is an eigen value of a real skew symmetric matrix. Prove that

$$\left|\frac{1-\lambda}{1+\lambda}\right| = 1.$$